4,525 research outputs found

    Dynamical Origin of Extrasolar Planet Eccentricity Distribution

    Full text link
    We explore the possibility that the observed eccentricity distribution of extrasolar planets arose through planet-planet interactions, after the initial stage of planet formation was complete. Our results are based on ~3250 numerical integrations of ensembles of randomly constructed planetary systems, each lasting 100 Myr. We find that for a remarkably wide range of initial conditions the eccentricity distributions of dynamically active planetary systems relax towards a common final equilibrium distribution, well described by the fitting formula dn ~ e exp[-1/2 (e/0.3)^2] de. This distribution agrees well with the observed eccentricity distribution for e > 0.2, but predicts too few planets at lower eccentricities, even when we exclude planets subject to tidal circularization. These findings suggest that a period of large-scale dynamical instability has occurred in a significant fraction of newly formed planetary systems, lasting 1--2 orders of magnitude longer than the ~1 Myr interval in which gas-giant planets are assembled. This mechanism predicts no (or weak) correlations between semimajor axis, eccentricity, inclination, and mass in dynamically relaxed planetary systems. An additional observational consequence of dynamical relaxation is a significant population of planets (>10%) that are highly inclined (>25deg) with respect to the initial symmetry plane of the protoplanetary disk; this population may be detectable in transiting planets through the Rossiter-McLaughlin effect.Comment: Accepted to ApJ, conclusions updated to reflect the current observational constraint

    Formation of Hot Planets by a combination of planet scattering, tidal circularization, and Kozai mechanism

    Full text link
    We have investigated the formation of close-in extrasolar giant planets through a coupling effect of mutual scattering, Kozai mechanism, and tidal circularization, by orbital integrations. We have carried out orbital integrations of three planets with Jupiter-mass, directly including the effect of tidal circularization. We have found that in about 30% runs close-in planets are formed, which is much higher than suggested by previous studies. We have found that Kozai mechanism by outer planets is responsible for the formation of close-in planets. During the three-planet orbital crossing, the Kozai excitation is repeated and the eccentricity is often increased secularly to values close enough to unity for tidal circularization to transform the inner planet to a close-in planet. Since a moderate eccentricity can remain for the close-in planet, this mechanism may account for the observed close-in planets with moderate eccentricities and without nearby secondary planets. Since these planets also remain a broad range of orbital inclinations (even retrograde ones), the contribution of this process would be clarified by more observations of Rossiter-McLaughlin effects for transiting planets.Comment: 15 pages, 16 figures, Accepted for publication in Ap

    The Prograde Orbit of Exoplanet TrES-2b

    Get PDF
    We monitored the Doppler shift of the G0V star TrES-2 throughout a transit of its giant planet. The anomalous Doppler shift due to stellar rotation (the Rossiter-McLaughlin effect) is discernible in the data, with a signal-to-noise ratio of 2.9, even though the star is a slow rotator. By modeling this effect we find that the planet's trajectory across the face of the star is tilted by -9 +/- 12 degrees relative to the projected stellar equator. With 98% confidence, the orbit is prograde.Comment: ApJ, in press [15 pages

    Global existence problem in T3T^3-Gowdy symmetric IIB superstring cosmology

    Full text link
    We show global existence theorems for Gowdy symmetric spacetimes with type IIB stringy matter. The areal and constant mean curvature time coordinates are used. Before coming to that, it is shown that a wave map describes the evolution of this system

    Inertial-range spectrum of whistler turbulence

    Get PDF
    We develop a theoretical model of an inertial-range energy spectrum for homogeneous whistler turbulence. The theory is a generalization of the Iroshnikov-Kraichnan concept of the inertial-range magnetohydrodynamic turbulence. In the model the dispersion relation is used to derive scaling laws for whistler waves at highly oblique propagation with respect to the mean magnetic field. The model predicts an energy spectrum for such whistler waves with a spectral index −2.5 in the perpendicular component of the wave vector and thus provides an interpretation about recent discoveries of the second inertial-range of magnetic energy spectra at high frequencies in the solar wind

    A hard X-ray polarimeter designed for transient astrophysical sources

    Get PDF
    — This paper discusses the latest progress in the development of GRAPE (Gamma-Ray Polarimeter Experiment), a hard X-ray Compton Polarimeter. The purpose of GRAPE is to measure the polarization of hard X-rays in the 50-300 keV energy range. We are particularly interested in X-rays that are emitted from solar flares and gamma-ray bursts (GRBs). Accurately measuring the polarization of the emitted radiation from these sources will lead, to a better understating of both the emission mechanisms and source geometries. The GRAPE design consists of an array of plastic scintillators surrounding a central high-Z crystal scintillator. We can monitor individual Compton scatters that occur in the plastics and determine whether the photon is photo absorbed by the high-Z crystal or not. A Compton scattered photon that is immediately photo absorbed by the high-Z crystal constitutes a valid event. These valid events provide us with the interaction locations of each incident photon and ultimately produces a modulation pattern for the Compton scattering of the polarized radiation. Comparing with Monte Carlo simulations of a 100% polarized beam, the level of polarization of the measured beam can then be determined. The complete array is mounted on a flat-panel multi-anode photomultiplier tube (MAPMT) that can measure the deposited energies resulting from the photon interactions. The design of the detector allows for a large field-ofview (\u3e π steradian), at the same time offering the ability to be close-packed with multiple modules in order to reduce deadspace. We plan to present in this paper the latest laboratory results obtained from GRAPE using partially polarized radiation sources

    Decomposicao da evolucao da desigualdade de renda no Brasil em efeitos idade, periodo e coorte / Explaining income inequality in Brazil: age, period and cohort effects

    Get PDF
    A partir dos microdados da Pesquisa Nacional por Amostra de Domicílios (PNAD), este trabalho tem como objetivo contribuir para o entendimento da evolução da desigualdade de renda no Brasil, de 1981 a 2001, ao identificar, sob algumas hipóteses, os efeitos idade, período e coorte. O método de identificação utilizado, proposto por Deaton e Paxson (1994), permitiu estimar esses efeitos para indicadores de desigualdade Theil-T com base na renda familiar de todas as fontes e na renda familiar do trabalho principal para a amostra total dos chefes de família e por grupo de escolaridade. Os principais resultados encontrados mostram que: a) a desigualdade de renda aumenta para as gerações mais novas, sendo esse aumento mais acentuado para a medida de renda do trabalho principal; b) o efeito coorte não é significativo para famílias com chefes de mesma escolaridade, o que sugere que o crescimento da desigualdade de renda para as gerações mais novas possa refletir um aumento da escolaridade das gerações mais novas em relação às antigas; c) a desigualdade de rendimentos do trabalho principal cresce acentuadamente com a idade, sobretudo para os grupos de maior escolaridade, o que é compatível com implicações da teoria do capital humano; d) a desigualdade de renda de todas as fontes tende a se reduzir após uma certa idade para os grupos de menor escolaridade; e e) há um efeito período significativo de aumento da desigualdade de renda observado em 1989 e 1993, períodos de aguda aceleração inflacionária. / Using Brazilian household survey data, this paper aims to contribute for a better understanding of the income inequality evolution from 1981 to 2001. This is done by decomposing the time evolution of the income inequality among Brazilian households into age, time and cohort effects. Identification of these effects follows as an application of the method proposed by Deaton and Paxson (1994) to a series of Theil-T inequality indexes of overall family income and earnings for the whole sample of household heads, as well as for schooling groups. The main results are: a) income and, more pronouncedly, earnings, are more unevenly distributed among families belonging to the youngest generations; b) the cohort effect is not important among families whose heads have similar levels of schooling, which suggests that the rise in inequality among younger cohorts is a result of the increase in schooling levels along the last decades; c) large positive age effects are present, especially for groups with higher schooling levels; d) income inequality tends to decrease after a certain age for groups with low education; and e) peaks in income inequality were observed in 1989 and 1993, probably due to sharp increases in inflation

    Developing a Compton Polarimeter to Measure Polarization of Hard X-Rays in the 50-300 keV Energy Range

    Get PDF
    This paper discusses the latest progress in the development of GRAPE (Gamma-Ray Polarimeter Experiment), a hard X-ray Compton Polarimeter. The purpose of GRAPE is to measure the polarization of hard X-rays in the 50-300 keV energy range. We are particularly interested in X-rays that are emitted from solar flares and gamma-ray bursts (GRBs). Accurately measuring the polarization of the emitted radiation from these sources will lead, to a better understating of both the emission mechanisms and source geometries. The GRAPE design consists of an array of plastic scintillators surrounding a central high-Z crystal scintillator. We can monitor individual Compton scatters that occur in the plastics and determine whether the photon is photo absorbed by the high-Z crystal or not. A Compton scattered photon that is immediately photo absorbed by the high-Z crystal constitutes a valid event. These valid events provide us with the interaction locations of each incident photon and ultimately produces a modulation pattern for the Compton scattering of the polarized radiation. Comparing with Monte Carlo simulations of a 100% polarized beam, the level of polarization of the measured beam can then be determined. The complete array is mounted on a flat-panel multi-anode photomultiplier tube (MAPMT) that can measure the deposited energies resulting from the photon interactions. The design of the detector allows for a large field-of-view (>pi steradian), at the same time offering the ability to be close-packed with multiple modules in order to reduce deadspace. We plan to present in this paper the latest laboratory results obtained from GRAPE using partially polarized radiation sources.Comment: 10 pages; conference paper presented at the SPIE conference "UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XIV." To be published in SPIE Conference Proceedings, vol. 589

    Prospects for GRB Polarimetry with GRAPE

    Get PDF
    This paper discusses the latest progress in the development of GRAPE (Gamma‐Ray Polarimeter Experiment), a hard X‐ray Compton Polarimeter. The purpose of GRAPE is to measure the polarization of hard X‐rays in the 50–300 keV energy range. We are particularly interested in X‐rays that are emitted from solar flares and gamma‐ray bursts (GRBs). Accurately measuring the polarization of the emitted radiation from these sources will lead to a better understating of both the emission mechanisms and source geometries. The GRAPE design consists of an array of plastic scintillators surrounding a central high‐Z crystal scintillator. We can monitor individual Compton scatters that occur in the plastics and determine whether the photon is photo absorbed by the high‐Z crystal or not. A Compton scattered photon that is immediately photo absorbed by the high‐Z crystal constitutes a valid event. These valid events provide us with the interaction locations of each incident photon and ultimately produces a modulation pattern for the Compton scattering of the polarized radiation. Comparing with Monte Carlo simulations of a 100% polarized beam, the level of polarization of the measured beam can then be determined. The complete array is mounted on a flat‐panel multi‐anode photomultiplier tube (MAPMT) that can measure the deposited energies resulting from the photon interactions. The design of the detector allows for a large field‐of‐view (\u3e π steradian), at the same time offering the ability to be close‐packed with multiple modules in order to reduce deadspace. We present in this paper the latest laboratory results obtained from GRAPE using partially polarized radiation sources along with a brief description of our future plans for the GRAPE design
    corecore